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1. Introduction

With the start of the LHC and the possible observation of superparticles approaching,

there is an increasing interest in specific predictions for their mass spectrum, which results

from the interplay between fermion mass models and models for supersymmetry breaking.

Supersymmetric orbifold GUTs [1 – 7] are attractive candidates for unified theories explain-

ing the masses and mixings of fermions. Features such as the doublet-triplet splitting and

the absence of dimension-five operators for proton decay, which are difficult to realise in

four-dimensional grand unified theories, are easily obtained. Given the higher-dimensional

setup with various branes, the mechanism of supersymmetry breaking involves in general

bulk as well as brane fields.

Following this rationale, we consider an SO(10) theory in six dimensions, proposed

in [8], in combination with gaugino-mediated SUSY breaking [9, 10]. The orbifold com-

pactification of the two extra dimensions has four fixed points or “branes”. On three

of them, three quark-lepton generations are localised. The Standard Model leptons and

down-type quarks are linear combinations of these localised fermions and a partial fourth

generation living in the bulk. This leads to the observed large neutrino mixings. On the

fourth brane, we assume a gauge-singlet field S to develop an F -term vacuum expectation
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value (vev) breaking SUSY. As the gauge and Higgs fields propagate in the bulk, they

feel the effects of SUSY breaking. Thus, gauginos and Higgs scalars obtain soft masses.

The soft masses and trilinear couplings of the scalar quarks and leptons approximately

vanish at the compactification scale. Non-zero values are generated by the running to low

energies, which leads to a realistic superparticle mass spectrum. If the gravitino is the

lightest superparticle (LSP), it can be the dominant component of the dark matter. The

next-to-lightest superparticle (NLSP) is then a scalar tau or a scalar neutrino, which is

consistent with constraints from big bang nucleosynthesis.

In the next section, we will describe the orbifold model and the couplings needed

for SUSY breaking. Subsequently, we will demonstrate that the presence of extra matter

fields in the bulk leads to severe problems with flavour-changing neutral currents (FCNCs)

unless the couplings of these fields to the SUSY-breaking field S are suppressed. Using

näıve dimensional analysis (NDA), we derive upper bounds on the unknown couplings of

the theory and thus on the non-vanishing soft masses, µ and Bµ at high energy. Finally,

we calculate the low-energy superparticle mass spectrum. A realistic spectrum requires

the soft Higgs masses to satisfy bounds which are slightly stronger than those estimated

by NDA.

2. The orbifold GUT model

We consider an N = 1 supersymmetric SO(10) gauge theory in six dimensions compactified

on the orbifold T 2/ (
�

2 ×
� ′

2 ×
� ′′

2) [8]. The theory has four fixed points, Oi, Ops, Ogg and

Ofl, located at the corners of a “pillow” corresponding to the two compact dimensions. At

Oi the full SO(10) survives, whereas at the other fixed points, Ops, Ogg and Ofl, SO(10) is

broken to its three GUT subgroups Gps = SU(4) × SU(2) × SU(2), Ggg = SU(5)×U(1)X

and flipped SU(5), Gfl = SU(5)′ × U(1)′, respectively. The intersection of these GUT

groups yields the Standard Model group with an additional U(1) factor, Gsm′ = SU(3) ×
SU(2) × U(1)Y × U(1)X , as unbroken gauge symmetry below the compactification scale,

which we identify with the GUT scale.

The field content of the theory is strongly constrained by requiring the cancellation

of bulk and brane anomalies. The brane fields are the three 16-plets ψi, i = 1, 2, 3. The

bulk contains six 10-plets, H1, . . . ,H6, and four 16-plets, Φ,Φc, φ, φc, as hypermultiplets.

Vevs of Φ and Φc break the surviving U(1)B−L. The electroweak gauge group is broken by

expectation values of the doublets contained in H1 and H2.

We choose the parities of φ, φc and H5,H6 such that their zero modes are

L =

(
ν4

e4

)
, Lc =

(
nc

4

ec
4

)
, Gc

5 = dc
4 , G6 = d4 . (2.1)

These zero modes act as a fourth generation of down (s)quarks and (s)leptons and mix

with the three generations of brane fields. We allocate the three sequential 16-plets to the

three branes where SO(10) is broken to its three GUT subgroups, placing ψ1 at Ogg, ψ2

at Ofl and ψ3 at Ops. The three “families” are then separated by distances large compared

to the cutoff scale Λ. Hence, they can only have diagonal Yukawa couplings with the
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H1 H2 Φc H3 Φ H4 ψi φc φ H5 H6 S

R 0 0 0 2 0 2 1 1 1 1 1 0

X̃ -2a -2a -a 2a a -2a a -a a 2a -2a 0

Table 1: Charge assignments for the symmetries U(1)R and U(1)X̃

bulk Higgs fields. The brane fields, however, can mix with the bulk zero modes without

suppression. As these mixings take place only among left-handed leptons and right-handed

down-quarks, we obtain a characteristic pattern of mass matrices.

The model has the minimal amount of supersymmetry in six dimensions, correspond-

ing to N = 2 extended supersymmetry in four dimensions. The breaking to N = 1

supersymmetry at the four-dimensional fixed points is achieved by the
�

2-symmetry. Soft

SUSY-breaking terms are generated by gaugino mediation [9, 10]. We place the gauge-

singlet chiral superfield S, which acquires a non-vanishing vev for its F -term component,

at the fixed point Oi. Supersymmetry is then fully broken and the breaking can be com-

municated to gauge, Higgs and other bulk fields by direct interactions. The MSSM squarks

and sleptons that live on branes can obtain soft SUSY-breaking masses via loop contribu-

tions through the bulk, which are negligible here, and via renormalisation group running.

To study the scalar masses and mixings we first have to discuss all couplings which can

lead to mass terms.

2.1 The superpotential

The superpotential determines the SUSY-conserving mass terms and Yukawa couplings.

The allowed terms are restricted by R-invariance and an additional U(1)X̃ symmetry with

the charge assignments given in Tab. 1. Starting from the six-dimensional theory, the

effective four-dimensional fields are obtained by integrating out the two extra dimensions.

This leads to a volume factor between the original six-dimensional fields and the properly

normalised fields we use here, Φ =
√

V Φ6.

The most general brane superpotential without the singlet field S is given in [8]. All

zero modes which have not been given in eq. (2.1) can be found in [11]. Since the fields ψi

and φ have the same quantum numbers, they are combined to the quartet ψα = (ψi, φ).

When the bulk fields are replaced by their zero modes, only 9 of the 23 terms appearing

in the superpotential remain. They are given by

W = MdH5H6 + M l
αψαφc +

1

2
h

(1)
αβψαψβH1 +

1

2
h

(2)
αβψαψβH2 + fαΦψαH6

+
hN

αβ

2Λ
ψαψβΦcΦc +

gd
α

Λ
ΦcψαH5H1 + fDΦcΦcH3 + fGΦΦH4 . (2.2)

Consider now terms which involve the supersymmetry breaking singlet field S. We

want the brane Lagrangian to yield gaugino masses, since they cannot be generated radia-

tively when starting from a vanishing mass at the compactification scale. Therefore, the

source brane Lagrangian coupling the zero modes of the gauge fields to the chiral field on
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the source brane takes the form

LS ⊃ g2
4h

4Λ

∫
d2θ S W αWα + h.c. , (2.3)

where g4 is the four-dimensional gauge coupling and h is a dimensionless coupling. From

this equation and the ordinary kinetic term 1
4

∫
d2θ W αWα + h.c. for the gauge fields we

conclude that S must have U(1)X̃ - and R-charge 0 to leave the Lagrangian invariant.

Therefore, terms respecting all the symmetries including U(1)X̃ are simply given by

LS ∝
∫

d2θ
S

Λ
W + h.c. , (2.4)

where W is the superpotential given above and where we only keep those terms of W which

are at most cubic in the fields. Note that in addition ψα has to be replaced by φ, since

the matter fields ψi cannot have direct couplings to the source brane. Moreover, we are

interested only in terms which are non-zero when replacing the fields by their zero modes.

A 16-plet ψ of SO(10) is written in standard notation as ψ = (q, uc, ec, l, dc, nc). When

setting the chiral field S to its vev FS , the scalar components of the superfields remain,

whereas the fermionic components are projected out. When furthermore the 16-plets Φ,Φc

acquire a vev 〈Φ〉 = 〈Φc〉 = vN ∼ MGUT leading to the spontaneous breakdown of U(1)B−L

we obtain (cf. eq. (2.1))

LS ⊃ −
∫

d2θ
S

Λ

(
M̃dd̃c

4d̃4 + M̃ l
4 l̃4l̃

c
4

)
+ h.c. . (2.5)

Additional terms involving the heavy fields Φ,Φc have been dropped. Note that U(1)B−L

is a subgroup of the local symmetry U(1)Y ×U(1)X . The vevs 〈Φ〉 = 〈Φc〉 break U(1)X ×
U(1)X̃ to a U(1) subgroup. As discussed in [11], the superpotential (2.2) then yields masses

of order MGUT for unwanted colour triplets contained in Φ,Φc,H3 and H4. In this way,

the unification of gauge couplings is maintained.

2.2 The Kähler potential

In addition, soft mass terms can arise from the Kähler potential. We assume the global

U(1)X̃ symmetry to be only approximate and allow for explicit breaking here. This is

necessary in order to obtain a µ-term, which is not allowed in the superpotential, since the

combination H1H2 is not invariant under U(1)X̃ . Besides, an explicit breaking of U(1)X̃ is

in fact required in order to avoid Goldstone bosons. Terms which result in non-negligible

effects have to involve fields which acquire a large vev in order to compensate for the

suppression by the cutoff scale Λ. In our case, large vevs are acquired by Φ, Φc and S.

We find that all terms without the singlet field S do not contribute to any soft masses but

merely give corrections to the kinetic terms. Concentrating on the terms involving S, we

do not consider terms with heavy fields that have no influence on low-energy physics. In
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terms of the zero modes, the relevant part of the Kähler potential is

LS ⊃−
∫

d4θ

{
S†

Λ

(
aH2H

c
1 + b1H

c†
1 Hc

1 + b2H
†
2H2

)
+ h.c.

+
1

Λ2
S†S

[
c1H

c†
1 Hc

1 + c2H
†
2H2 + (dH2H

c
1 + h.c.)

]}

−
∫

d4θ

{
ei

Λ
S†B†

i Bi + h.c. +
e′i
Λ2

S†S B†
i Bi

}
, (2.6)

yielding an effective µ-term, soft Higgs masses, a Bµ-term and soft masses for all other

bulk fields. Bi (i = 1, . . . ) stands for any bulk matter field except H1,2. Although the µ-

term itself is not a soft term, it is generated only after the breaking of supersymmetry via

the Giudice-Masiero mechanism [12]. Note that there would be no electroweak symmetry

breaking without the breaking of SUSY and hence no massive (s)particles at the electroweak

scale.

To see the contributions to the soft masses explicitly, we express the Lagrangian by

component fields, plugging in the F -term vev FS and the scalar vev vN . Furthermore,

we employ the equations of motion for the auxiliary fields and assume real couplings for

simplicity. Concentrating on the fourth generation and on the Higgs fields, this results in

the following scalar mass terms:

LS ⊃− F †
SFS

Λ2

[ (
a2 + b2

1 + c1

)
h̃c†

1 h̃c
1 +

(
a2 + b2

2 + c2

)
h̃†

2h̃2

+
(
a (b1 + b2) + d

)
h̃c

1h̃2 + h.c.
]

− F †
SFS

Λ2

[ (
e2
d + e′d

)
d̃†4d̃4 +

(
e2
dc + e′dc

)
d̃c†
4 d̃c

4 +
(
e2
l + e′l

)
l̃†4l̃4 +

(
e2
lc + e′lc

)
l̃c†4 l̃c4

]

− FS

Λ

[
M̃dd̃c

4d̃4 + M̃ l
4l̃4 l̃

c
4

]
+ h.c. , (2.7)

where we have included the contribution from eq. (2.5) in the last line. We denote the

components of a chiral multiplet by (φ̃, φ, FΦ), with Φ = Hc
1,H2, d4, d

c
4, l4, l

c
4. Note that

the Higgs mass contribution proportional to a2 is supersymmetric and hence the soft Higgs

masses are given by the terms proportional to (b2
1,2 + c1,2).

We assume that there are no sizable contributions to the scalar masses from D-terms,

which can arise when a gauged U(1) symmetry is broken or when there are soft SUSY

breaking terms which lift a D-flat direction in the scalar potential [13, 14].

3. The scalar mass matrices and FCNCs

It is well known that in order to avoid flavour-changing neutral currents (FCNCs), the

squark and slepton mass matrices have to be approximately diagonal in a basis where

quark and lepton mass matrices are diagonal. In the following, we shall analyse this

question for our orbifold GUT model. We have seen in the previous section that only the

scalars of the fourth generation, which are very heavy, obtain soft masses, since they are

bulk fields. We will demonstrate now that this leads to soft masses for the light scalars,
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too. At the compactification scale, we integrate out the heavy degrees of freedom to obtain

an effective theory with three generations. This requires diagonalising the mass matrices,

and the corresponding transformations transmit SUSY-breaking effects from the fourth to

the light generations.

From the zero mode superpotential (2.2), one obtains the mass terms

W ⊃ dαmd
αβdc

β + ec
αme

αβeβ + nc
αmD

αβνβ + uc
im

u
ijuj +

1

2
nc

iMijn
c
j , (3.1)

where md, me and mD are 4 × 4 mass matrices of the form

m =




µ1 0 0 µ̃1

0 µ2 0 µ̃2

0 0 µ3 µ̃3

M̃1 M̃2 M̃3 M̃4


 . (3.2)

Here µi, µ̃i ∼ v and M̃i ∼ MGUT. While µi and µ̃i have to be hierarchical, we assume no

hierarchy between the M̃i. We have neglected corrections of order O(vN/Λ). For simplicity,

we assume all matrices to be real. The up-type quark and Majorana mass matrices mu

and M are diagonal 3 × 3 matrices, since the corresponding fields do not have partners in

the bulk.

The mass matrices m can be brought to the block-diagonal form

m′ = U †
4mV4 =

(
m̂ 0

0 M̃

)
+ O

(
v2

M̃

)
(3.3)

by the transformation

e → e′ = V †
4 e , ec → ec′ = ec U4 , (3.4)

where we have chosen the charged leptons for concreteness. Here U4 and V4 are the unitary

matrices

U4 =




1 0 0 µ1
fM1+eµ1

fM4

fM2

0 1 0 µ2
fM2+eµ2

fM4

fM2

0 0 1 µ3
fM3+eµ3

fM4

fM2

−µ1
fM1+eµ1

fM4

fM2
−µ2

fM2+eµ2
fM4

fM2
−µ3

fM3+eµ3
fM4

fM2
1




+ O
(

v2

M̃2

)
, (3.5a)

V4 =




fM4

fM14

0 − fM1
fM23

fM fM14

fM1

fM

0
fM3

fM23

fM2
fM14

fM fM23

fM2

fM

0 − fM2

fM23

fM3
fM14

fM fM23

fM3

fM

− fM1

fM14

0 − fM4
fM23

fM fM14

fM4

fM




(3.5b)

with M̃ =

√∑
α M̃2

α and M̃αβ =
√

M̃2
α + M̃2

β [15]. The transformation V4 contributes to

the desired large mixing between the left-handed leptons. U4, on the other hand, is close
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to the unit matrix, so that there is only small mixing among the right-handed fields. Note

that the situation is reversed in the down-quark sector, where the right-handed fields are

strongly mixed while the left-handed ones are not.

The SUSY-conserving charged slepton mass matrices are m2
eL

= me†me and m2
eR

=

meme†. In addition, there are the soft masses m2
ẽL

etc. with non-zero 44-element. Among

them is the matrix m2
ẽLR

, which arises from eq. (2.5) and mixes l̃4 and l̃c4, but it can be

neglected for our purposes. For the complete mass matrices we use the notation m2
ẽL,tot =

m2
eL

+ m2
ẽL

etc. Under the transformation (3.4), they change to

m′2
ẽL,tot = V †

4 m2
eL

V4 + V †
4 m2

ẽL
V4

=

(
m̂†m̂ 0

0 M̃2

)
+ V †

4

(
0 0

0 m2
l̃4L

)
V4 + O(v2)

(
v2

fM2
1

1 1

)
, (3.6a)

m′2
ẽR,tot = U †

4 m2
eR

U4 + U †
4 m2

ẽR
U4

=

(
m̂m̂† 0

0 M̃2 + m2
l̃4R

)
+ O

(
v3

M̃
,
v m2

l̃4R

M̃

)
, (3.6b)

where the fourth-generation soft masses are denoted by m2
l̃4L

and m2
l̃4R

, in analogy to those

of the first three generations, although both l4 and lc4 are SU(2)L doublets. The matrices

are block-diagonal up to rotations by angles of order v2/M̃2 or smaller, which can safely

be neglected. The soft masses of the light “right-handed” sleptons are highly suppressed.

However, this is not true for their “left-handed” counterparts, whose 3 × 3 mass matrix is

given by

(m′2
ẽL,tot)ij = (m̂†m̂)ij + (V4)4i(V4)4j m2

l̃4L
= (m̂†m̂)ij + (m̂2

ẽL
)ij . (3.7)

The light fermion mass matrix m̂ is diagonalised by a second change of basis,

mdiag = VCKM m̂ V̂ . (3.8)

In the approximation µ1 = µ2 = 0, the transformation matrix V̂ is known explicitly [15],

V̂ =




− fM2
fM4

fM12
fM14

fM1(eµ3
fM3

fM4−µ3
fM2

124)
µ̄3

fM fM12
fM14

− eµ3

µ̄3

fM1

fM14

fM1
fM3

fM12
fM23

fM2(eµ3
fM2

123
−µ3

fM3
fM4)

µ̄3
fM fM12

fM23

−µ3

µ̄3

fM2

fM23

fM1
fM2

fM
fM12

fM14
fM23

− eµ3
fM2

1
fM3+µ3

fM2

2
fM4

µ̄3
fM12

fM14
fM23

− eµ3

µ̄3

fM4
fM23

fM fM14

+ µ3

µ̄3

fM3
fM14

fM fM23




(3.9)

up to a rotation of the second and third generation by a small angle given by the ratio

of the 23- and 33-elements of V̂ † m̂†m̂ V̂ , ΘR ' (µ̃2
1 + µ̃2

2)/µ̄
2
3 ¿ 1. In eq. (3.9), we have

defined M̃2
αβγ = M̃2

α + M̃2
β + M̃2

γ and

µ̄2
3 = µ̃2

3

(
1 − M̃2

4

M̃2

)
+ µ2

3

(
1 − M̃2

3

M̃2

)
− 2µ3µ̃3

M̃3M̃4

M̃2
. (3.10)
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We finally obtain for the charged slepton mass matrix in the basis where the charged

fermion mass matrix is diagonal

V̂ † (m̂†m̂ + m̂2
ẽL

) V̂ =



0 0 0

0
µ2

3
fM2

12

µ̄2

3
fM2

(
µ̃2

1 + µ̃2
2 + m2

l̃4L

)
µ3

fM12(eµ3
fM2

123
−µ3

fM3
fM4)

µ̄2

3
fM3

(
µ̃2

1 + µ̃2
2 + m2

l̃4L

)

0
µ3

fM12(eµ3
fM2

123
−µ3

fM3
fM4)

µ̄2

3
fM3

(
µ̃2

1 + µ̃2
2 + m2

l̃4L

)
µ̄2

3 +
(eµ3

fM2

123
−µ3

fM3
fM4)

2

µ̄2

3
fM4

m2
l̃4L

+ O
( eµ2

1
+eµ2

2

µ̄2

3

)


 .

The non-zero off-diagonal elements are of similar size as the diagonal elements, unless

ml̃4L
¿ µ̄3 ∼ mτ . Numerically, we find that the same is true for the 12- and 13-entries,

if µ1 and µ2 are non-zero. This leads to unacceptably large FCNCs in the lepton sector.

The situation in the down quark sector is analogous. We expect this problem to be generic

in higher-dimensional theories with mixing between bulk and brane matter fields as long

as the bulk fields can couple to the hidden sector (cf. e.g. [16]). In the following, we

shall assume that soft masses for bulk matter fields, contrary to the bulk Higgs fields, are

strongly suppressed, i.e. ml̃4L,R
' md̃4L,R

' 0. Within the present framework of orbifold

GUTs, the coupling of brane and bulk fields cannot be understood dynamically.

4. Constraints from näıve dimensional analysis

The couplings of the brane field S(x) to bulk fields B(x, y) can be constrained by näıve

dimensional analysis [17]. For this purpose, one rewrites the relevant part of the six-

dimensional Lagrangian

LB,S = Lbulk(B(x, y)) + δ2(y − yS)LS(B(x, y), S(x)) (4.1)

in terms of dimensionless fields B̂(x, y) and Ŝ(x), and the cutoff Λ, up to which the theory

should be valid,

LB,S =
Λ6

`6/C
L̂bulk(B̂(x, y)) + δ2(y − yS)

Λ4

`4/C
L̂S(B̂(x, y), Ŝ(x)) , (4.2)

where `6 = 128π3 and `4 = 16π2. Here yS corresponds to the extra-dimensional coordinates

of the brane where the singlet field S(x) resides, yS = (0, 0). The factor C accounts for

the multiplicity of fields in loop diagrams for a non-Abelian gauge group. The rescaling of

chiral bulk and brane superfields reads

B(x, y) =

(
Λ4V

`6/C

)1/2

B̂(x, y) , S(x) =

(
Λ2

`4/C

)1/2

Ŝ(x) . (4.3)

Note the additional factor of
√

V for the bulk field due to the proper normalisation.

The combination C/`D gives the typical geometrical suppression of loop diagrams.

This suppression is cancelled by the factors `6/C and `4/C in front of the Lagrangians L̂

in eq. (4.2). Consequently, all loops will be of the same order of magnitude, provided that
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all couplings are O(1). Thus, according to the NDA recipe the effective six-dimensional

theory remains weakly coupled up to the cutoff Λ, if the dimensionless couplings in eq. (4.2)

are smaller than one.

Let us apply NDA to the part of the brane Lagrangian giving rise to Higgs and Higgsino

masses, the first two lines of eq. (2.6). Using eq. (4.3), we obtain

LS ⊃ − Λ4

`4/C

∫
d4θ

Λ2

{
V Λ2

√
`4C

`6

(
aŜ†Ĥ2Ĥ

c
1 + b1Ŝ

†Ĥc†
1 Ĥc

1 + b2Ŝ
†Ĥ†

2Ĥ2 + h.c.
)

+
V Λ2C

`6
Ŝ†Ŝ

[
c1Ĥ

c†
1 Ĥc

1 + c2Ĥ
†
2Ĥ2 +

(
dĤ2Ĥ

c
1 + h.c.

)] }
. (4.4)

The NDA requirement that all couplings be smaller than one implies the following con-

straints on a, b1,2, c1,2, d:

V Λ2
√

`4C

`6
(a, b1, b2) < 1 , (4.5a)

(c1, c2, d)
V Λ2C

`6
< 1 . (4.5b)

Using `4 = 16π2 and `6 = 128π3, one then obtains upper bounds on the couplings at the

compactification scale,

(a, b1, b2) <
32π2

V Λ2
√

C
, (4.6a)

(c1, c2, d) <
128π3

V Λ2C
. (4.6b)

These inequalities translate into upper bounds on the µ- and Bµ-terms and on the soft

Higgs masses,

µ =
aF †

S

Λ
<

32π2F †
S

V
√

CΛ3
, (4.7a)

Bµ =

(
a (b1 + b2) + d

)
F †

SFS

Λ2
<

(
1 +

16π

V Λ2

) 128π3F †
SFS

V CΛ4
, (4.7b)

(m2
h̃2

,m2
h̃1

) =
(c2 + b2

2, c1 + b2
1)F †

SFS

Λ2
<

(
1 +

8π

V Λ2

) 128π3F †
SFS

V CΛ4
. (4.7c)

Applying the NDA recipe to those terms of eqs. (2.5) and (2.6) giving rise to soft

superparticle masses we obtain

LS ⊃ − Λ4

`4/C

[ ∫
d2θ

Λ

√
`4/C

`6/C
Λ2V

(
M̃d

Λ
ŜĤ5Ĥ6 +

M̃ l
4

Λ
Ŝφ̂φ̂c

)
+ h.c.

+

∫
d4θ

Λ2

√
`4/C

`6/C
Λ2V

{
eiŜ

†B̂†
i B̂i + h.c. +

e′i√
`4/C

Ŝ†Ŝ B̂†
i B̂i

}]
. (4.8)

The resulting upper bounds on the masses can be found in Tab. 2. We have also included

the bound on the gaugino mass derived in [18] and the gravitino mass.
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m1/2 =
g2

4
hFS

2Λ < 16π2FS√
CV Λ3

< 1TeV

m2
d̃4RL

= FS

Λ M̃d < 32π2FS√
CV Λ2

< (2 · 107 TeV)2

m2
l̃4LR

= FS

Λ M̃ l
4 < 32π2FS√

CV Λ2
< (2 · 107 TeV)2

m2
d̃4L

= (e2
d + e′d)

F †
S
FS

Λ2 < (1 + 8π
V Λ2 )

128π3F †
S
FS

CV Λ4 < (4TeV)2

m2
l̃4L

= (e2
l + e′l)

F †
S
FS

Λ2 < (1 + 8π
V Λ2 )

128π3F †
S
FS

CV Λ4 < (4TeV)2

µ = a
F †

S

Λ <
32π2F †

S√
CV Λ3

< 2TeV

(m2
h̃2

,m2
h̃1

) = (c2 + b2
2, c1 + b2

1)
F †

S
FS

Λ2 < (1 + 8π
V Λ2 )

128π3F †
S
FS

CV Λ4 < (4TeV)2

Bµ =
(
a (b1 + b2) + d

) F †
S

FS

Λ2 < (1 + 16π
V Λ2 )

128π3F †
S
FS

CV Λ4 < (5TeV)2

m3/2 = FS√
3M4

= 100GeV

Table 2: NDA constraints on mass parameters. The numerical values are valid for FS = 4 ·
1020 GeV2. The masses for the fields lc4, d

c
4 are analogous to those of l4, d4.

To be more explicit, we make assumptions about the values of the parameters involved.

The compactification scale is assumed to be of order the unification scale, V −1/2 = MGUT =

2.5 · 1016 GeV. The cutoff Λ is given by the six-dimensional Planck scale, Λ = M6 =

M
1/2
4 V −1/4 = 2.4 · 1017 GeV. We choose C = C2(G) for the group theory factor, which

gives C = 8 for the gauge group G = SO(10). This leads to the numerical values for the

NDA bounds shown in the last column of table 2.

5. The low-energy sparticle spectrum

Imposing ml̃4L,R
= md̃4L,R

= 0, the boundary conditions at the compactification scale are

those of the usual gaugino mediation scenario with bulk Higgs fields [10],

g1 = g2 = g3 = g ' 1√
2

, (5.1a)

M1 = M2 = M3 = m1/2 , (5.1b)

m2
φ̃L

= m2
φ̃R

= 0 for all squarks and sleptons φ̃ , (5.1c)

Aφ̃ = 0 for all squarks and sleptons φ̃ , (5.1d)

µ,Bµ,m2
h̃i

6= 0 (i = 1, 2) , (5.1e)

where GUT charge normalisation is used for g1. The scalar mass matrices then remain

almost diagonal, so that FCNCs are suppressed. We have neglected small corrections to

the scalar masses from gaugino loops [9] as well as corrections to the gauge couplings from

brane-localised terms breaking the unified gauge symmetry. For m2
h̃i

= 0, these boundary

conditions have previously been considered in different contexts in [19, 20]. Upper limits
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on the non-vanishing parameters are summarised in Tab. 2. If we choose a certain value

for the universal gaugino mass m1/2, this implies a lower bound on the vev FS according to

the first row of the table. The choice is constrained by the lower bound on the Higgs mass

from LEP, mh0 > 114.4GeV, because lighter gauginos imply a lighter Higgs. In addition,

we require the gravitino to be lighter than 100GeV, which leads to an upper bound on FS .

As a benchmark point for our discussion, we choose m1/2 = 500GeV, tan β = 10 and

sign(µ) = +1, which yields

2 · 1020 GeV2 < FS < 4 · 1020 GeV2 , (5.2a)

50GeV < m3/2 < 100GeV . (5.2b)

We use the current best-fit value mt = 172.7GeV [21] for the top mass. The values of µ

and Bµ are then determined by the conditions for electroweak symmetry breaking. We

find that their numerical values at the compactification scale are well below their NDA

bounds.

In order to find the spectrum at low energy, we have to take into account the running

of the parameters. We employ SOFTSUSY [22] for this purpose. To obtain an analytical

understanding of the results, let us consider the one-loop renormalisation group equations

(RGEs) for the soft masses at the compactification scale [23, 24],

16π2 dM2
i

dt
= 4big

2m2
1/2 , (5.3a)

16π2
dm2

q̃3L

dt
= −84

5
g2m2

1/2 +
1

5
g2 Tr(Y m2) + Xt + Xb , (5.3b)

16π2
dm2

t̃R

dt
= −64

5
g2m2

1/2 −
4

5
g2 Tr(Y m2) + 2Xt , (5.3c)

16π2
dm2

b̃R

dt
= −56

5
g2m2

1/2 +
2

5
g2 Tr(Y m2) + 2Xb , (5.3d)

16π2
dm2

τ̃L

dt
= −36

5
g2m2

1/2 −
3

5
g2 Tr(Y m2) + Xτ , (5.3e)

16π2
dm2

τ̃R

dt
= −24

5
g2m2

1/2 +
6

5
g2 Tr(Y m2) + 2Xτ , (5.3f)

16π2
dm2

h̃1

dt
= −36

5
g2m2

1/2 −
3

5
g2 Tr(Y m2) + 3Xb + Xτ , (5.3g)

16π2
dm2

h̃2

dt
= −36

5
g2m2

1/2 +
3

5
g2 Tr(Y m2) + 3Xt , (5.3h)

where t = ln µ
µ0

with the renormalisation scale µ, bi = (33
5 , 1,−3) are the coefficients in the

RGEs of the gauge couplings,

16π2 dg2
i

dt
= 2big

4 , (5.4)
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and

Xt = 2y2
t m

2
h̃2

' 1

2

(
1 + cot2 β

)
m2

h̃2

, (5.5a)

Xb = 2y2
b m2

h̃1

' 5 · 10−5
(
1 + tan2 β

)
m2

h̃1

, (5.5b)

Xτ = 2y2
τ m2

h̃1

' 10−4
(
1 + tan2 β

)
m2

h̃1

. (5.5c)

The numerical values in the previous equations represent the typical orders of magnitude

of the top, bottom and tau Yukawa couplings at high energy. We assume a not too large

tan β, so that Xb and Xτ are negligible at the GUT scale. However, we will see that Xτ can

become relevant at lower energies. The term Tr(Y m2), often abbreviated by S, vanishes

for universal scalar masses but plays an important role in our case, if one of the soft Higgs

masses is sufficiently large. At MGUT, it is given by

Tr(Y m2) = m2
h̃2

− m2
h̃1

. (5.6)

The RGEs for the first and second generation scalar masses are obtained from the above

equations by omitting Xt, Xb and Xτ . We do not list the RGEs for µ, Bµ and the A-terms,

since they are not relevant for our discussion. We will also use

16π2 d(g2
i M

2
i )

dt
= 6big

4m2
1/2 , (5.7a)

16π2 d Tr(Y m2)

dt
=

66

5
g2 Tr(Y m2) . (5.7b)

5.1 Gaugino masses

The 1-loop RGEs (5.3a) for the gaugino masses do not depend on the scalar masses, so

that their low-energy values remain virtually the same in all cases as long as we do not

change m1/2. Numerically, we find

M1(MZ) ' 200GeV , (5.8a)

M2(MZ) ' 380GeV , (5.8b)

M3(MZ) ' 1200GeV . (5.8c)

To good approximation, the lightest neutralino is the bino and the second-lightest one

is the wino, unless m2
h̃2

is sizable. In the latter case, the electroweak symmetry break-

ing conditions lead to a rather small µ, so that there is significant mixing between the

neutralinos.

5.2 Allowed parameter space for the soft Higgs masses

In addition to the constraints from NDA, there are phenomenological limits on the soft

masses m2
h̃i

at the compactification scale, which turn out to be more restrictive. The

resulting allowed region in parameter space is the gray-shaded area in figure 1.

One constraint is that the running of the parameters down to the weak scale must

not produce tachyons. For scalar masses which vanish at the compactification scale this

– 12 –



J
H
E
P
0
2
(
2
0
0
6
)
0
6
9

m
2 h~

1
 [
T

e
V

2
]

m
2
h
~

2
 [TeV

2
]

Tachyon

mχ~+
 < 94 GeV 

 0

 1

 2

 3

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

χ~
0
1 (N)LSP

ν~τ NLSP

τ~1 NLSP

m1/2 = 500 GeV

tan β = 10

1

2

3

4

Figure 1: Allowed region for the soft Higgs masses. In the dark-gray area, a neutralino is lighter

than all sleptons. For the points marked by the coloured dots, the resulting superparticle mass

spectrum is shown in figure 3.

means that their β-function must not be positive there.1 The one-loop RGE (5.3e) for the

left-handed sleptons gives the most restrictive constraint on m2
h̃1

,

m2
h̃1

< 12m2
1/2 + m2

h̃2

. (5.9)

The upper bounds on m2
h̃2

are due to the experimental limits on the superparticle

masses [25]. If the initial value of m2
h̃2

is too large, this mass squared crosses zero at a rather

low energy, so that its absolute value at the electroweak scale is small. Consequently, the µ

parameter is also small, leading to a Higgsino-like chargino with a mass below the current

limit of 94GeV. If we increased m2
h̃2

further, there would be no successful electroweak

symmetry breaking. This limit on m2
h̃2

is the relevant one for almost all values of m2
h̃1

.

Only for very small m2
h̃1

, the experimental requirement that the lighter stau be heavier

than 86GeV becomes more restrictive.

For simplicity we only consider positive soft Higgs masses at the compactification

scale. With negative soft masses, it is possible to end up in the “light Higgs window” at

the electroweak scale, though only in a very narrow parameter range. In this window with

both mh0
and mA around 90 — 100GeV we can decrease m1/2 significantly down to at

least 250GeV.

1Strictly speaking, a scalar mass squared may arrive at a positive value at low energies even if its β-

function is positive at the compactification scale. We do not take this possibility into account, so that the

constraints are conservative.
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Figure 2: Evolution of the scalar soft masses for m2

h̃1

= 2.7 TeV2, m2

h̃2

= 0 (point 2 in figure 1),

m1/2 = 500 GeV, tanβ = 10 and sign(µ) = +1 at MGUT.

5.3 Dependence of the spectrum on the Higgs masses

Due to the large effects of the strong interaction, the squark masses experience the fastest

running and end up around a TeV. The lighter stop mass runs more slowly due to Xt, which

is always sizable at lower energies, and reaches a value of about 800GeV. If all scalar soft

masses vanish at the GUT scale, the left-handed slepton masses change significantly in the

beginning, but afterwards the evolution flattens as g2
1M

2
1 and g2

2M
2
2 decrease (cf. eq. (5.7a)).

Hence, they reach intermediate values between 300 and 400GeV at low energies. The

flattening of the evolution is even more pronounced for the right-handed slepton masses,

since here it depends only on g2
1M

2
1 , which decreases faster than g2

2M2
2 . As a consequence,

these scalars remain lighter than the lightest neutralino [9], which is approximately the

bino: mẽR
(MZ) ' 180GeV, mχ0

1

' 200GeV. For both slepton “chiralities”, the third

generation is slightly lighter than the first two due to Xτ .

For m2
h̃1

6= m2
h̃2

, the term involving Tr(Y m2) is non-vanishing and can lead to import-

ant changes [26, 10, 27, 28]. We shall first consider the case where it is negative (m2
h̃1

> m2
h̃2

)

and saturates the bound from eq. (5.9) (numerically, we find a slightly stronger bound of

m2
h̃1

− m2
h̃2

< 2.7TeV2, which we use here). Then |Tr(Y m2)/m2
1/2| ∼ 10, so that the

first and second terms on the r.h.s. of the RGEs (5.3b)–(5.3f) can be of the same order of

magnitude. An example for the running of the scalar masses is shown in figure 2.

The most drastic change occurs in the slepton spectrum. For the largest possible value

of Tr(Y m2), the r.h.s. of eq. (5.3e) vanishes exactly at the GUT scale. It turns negative

only at lower energies due to the fast decrease of |Tr(Y m2)| (cf. eq. (5.7b)). As a result,

the left-handed sleptons remain relatively light, with a low-energy mass below 200GeV.

Contrary to that, both terms in the RGE for the right-handed slepton masses are of the

same sign, leading to an unusually fast running near the GUT scale. At lower energies,
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the evolution slows down quickly due to the fast decrease of both g2
1M

2
1 and |Tr(Y m2)|.

The resulting masses are close to 400GeV. Thus, the NLSP is a sneutrino in this case [27],

with a slightly heavier stau τ̃1 due to the SU(2)L and U(1)Y D-terms.

In the squark sector, large masses are generated again due to the strong interaction.

At high energies, there is a significant cancellation in the RGE (5.3c) for the right-handed

up-type squark masses, while the contributions to the other squark mass RGEs add up.

Consequently, mũR
and mt̃R

run quite slowly until |Tr(Y m2)| has decreased sufficiently.

Afterwards, mũR
runs faster and comes close to the masses of the left-handed and right-

handed down-type squarks at the electroweak scale.

If m2
h̃1

is neither close to zero nor to its upper bound, the running of the right-handed

slepton masses is sufficiently enhanced to lift them above the lightest neutralino mass. At

the same time, the running of the left-handed slepton masses is damped weakly enough, so

that they are heavier than the lightest neutralino, too [10, 27]. A neutralino NLSP together

with a gravitino LSP heavier than a GeV is excluded by cosmology [29 – 33]. Therefore, this

case is only viable if the neutralino is the LSP and the gravitino is heavier. This is possible,

because we only have a lower bound on the gravitino mass. The corresponding region in

parameter space is marked by the dark-gray area in figure 1. It grows for large values of

m2
h̃2

, since then mixing additionally decreases the lightest neutralino mass. A neutralino

LSP is also often obtained if the compactification scale is larger than the unification scale.

In this case, the running above MGUT tends to make the sleptons heavier than the lightest

neutralino [28, 34].

For m2
h̃2

> m2
h̃1

, Tr(Y m2) is positive. Now the evolution of the right-handed slep-

ton masses is slowed down by the Tr(Y m2)-term, while that of the left-handed masses is

enhanced. Consequently, the NLSP is the predominantly right-handed τ̃1, with a mass

of about 100GeV for m2
h̃2

= 0.5TeV2 and m2
h̃1

= 0. For these values, the masses of the

left-handed sleptons are roughly 350GeV.

Since m2
h̃2

cannot be much larger than 0.5TeV2, the RGEs for the squark masses

are always dominated by the term proportional to g2
3M

2
3 . Consequently, the low-energy

masses are almost unchanged compared to the case of vanishing soft scalar masses at the

compactification scale, except for mq̃3L
and mt̃R

, which decrease by up to 60GeV due to

the larger Xt.

As the dominant parts of the RGEs depend only on the difference m2
h̃1

− m2
h̃2

, the

same is true for the spectrum to a good approximation. The sum is only relevant for

those third-generation masses whose evolution is sensitive to the Xi, most notably mt̃R
. In

figure 3, we show the superparticle spectra that we obtain at the four points in parameter

space marked by the coloured dots in figure 1.

5.4 Dependence on the gaugino masses

To a first approximation, varying the high-energy gaugino mass simply leads to a rescaling

of the scalar spectrum. If m1/2 is increased while keeping the other soft masses fixed, the

relative sizes of Tr(Y m2) and the Xi decrease. Hence, they become less important and the

spectrum comes closer to the one obtained in the minimal case of vanishing scalar masses.
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Figure 3: Spectra of superparticle pole masses. The numbers at the bottom correspond to the

points in parameter space marked by the coloured dots in figure 1. The high-energy boundary

conditions for the soft Higgs masses were m2

h̃1

= m2

h̃2

= 0 (point 1), m2

h̃1

= 2.7 TeV2, m2

h̃2

= 0

(point 2), m2

h̃1

= 0, m2

h̃2

= 0.5 TeV2 (point 3), and m2

h̃1

= 2.7 TeV2, m2

h̃2

= 0.5 TeV2 (point 4),

respectively. In all cases, we used m1/2 = 500 GeV, tanβ = 10 and sign(µ) = +1. As the first and

second generation scalars are degenerate, only the first generation is listed in the figure. Particles

with a mass difference of less than about 3 GeV are represented by a single line. The heavier

neutralinos and the charginos have been omitted for better readability.

As mentioned before, the LEP bound on the lightest Higgs mass leads to a lower

bound on m1/2. Actually, with our benchmark value m1/2 = 500GeV we obtain a Higgs

mass slightly below 114GeV for small soft masses. However, the mass can easily be pushed

beyond the bound by raising the top mass by about 1.5GeV above its present best-fit value

of 172.7GeV. Furthermore, a non-zero mass m2
h̃1

also causes an increase of the Higgs mass.

If m2
h̃1

takes the maximal value allowed by eq. (5.9), a unified gaugino mass of slightly less

than 400GeV is compatible with the LEP bound (for mt = 172.7GeV).

5.5 Dependence on tan β

The influence of tan β on the results is also rather straightforward to understand. As to the

RGEs, it only enters in the parameters Xt, Xb and Xτ , which play a role in the evolution

of the third-generation soft masses. Hence, a change of tan β leads to a change of the mass

splitting between this generation and the first two.
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Figure 4: Allowed region for the soft Higgs masses for tanβ = 20. In the dark-gray area, a

neutralino is lighter than all sleptons.

If tan β is significantly smaller than 10, the value used in our benchmark scenario, Xt

increases. Consequently, t̃R and q̃3L become slightly lighter. On the other hand, Xb and

Xτ are negligible now, so that the inter-generation mass splitting in the slepton and right-

handed down-type squark sector becomes tiny. The Higgs mass bound leads to severer

restrictions now. If tan β < 8, raising the top mass to the maximal value of 175.6GeV

allowed by experiment no longer yields mh0 > 114.4GeV for m2
h̃1

= 0. If tan β < 6, the

bound is violated even for maximal mt and m2
h̃1

, i.e. a gaugino mass larger than 500GeV

is required.

For larger values of tan β, Xb and Xτ become more important. Nevertheless, the

impact of the former parameter on the RG evolution remains subdominant compared to

that of the strong interaction. Hence, its increase only causes a larger splitting between

md̃R
and mb̃R

, but does not lead to any new restrictions. In contrast, the lighter stau

mass decreases a lot faster at lower energies due to the larger Xτ . On the one hand, this

increases the parameter space region where the τ̃1 is lighter than the neutralinos, as shown

in figure 4 for tan β = 20. On the other hand, the soft scalar masses have to satisfy severer

upper bounds in order to avoid tachyons and a too light stau. As tan β increases beyond

20, mixing causes an additional decrease of mτ̃1 , as the off-diagonal term in the mass

matrix,
(
m2

τ̃

)
12

' −vµyτ , becomes comparable to the diagonal entries. For tan β = 25, the

region of parameter space where the neutralino is lighter than the τ̃1 almost vanishes. For

tan β = 35, the model is only viable if all soft scalar masses vanish at the GUT scale, and

for tan β > 35 the lighter stau mass always lies below its experimental limit.2

2Valid points in parameter space may exist for negative soft Higgs masses, but even in this case the
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These problems are alleviated for heavier gauginos. In order to obtain a viable model

with tan β = 50, one requires m1/2 & 850GeV, if all other soft masses vanish. If they

are non-zero, the gaugino mass has to be even larger. In the resulting spectrum, only one

stau is relatively light, while the remaining superparticle masses lie above 300GeV. As the

lower bound on the gravitino mass rises with m1/2, the gravitino may become heavier than

the stau, which is excluded by cosmology.

We conclude that the model favours 10 . tan β . 25. For values far outside this range,

the phenomenological bounds on the soft masses are much more restrictive than the NDA

limits, which appears unnatural.

6. Conclusions

We have discussed gaugino-mediated SUSY breaking in a six-dimensional SO(10) orbifold

GUT model where quarks and leptons are mixtures of brane and bulk fields. The couplings

of bulk matter fields to the SUSY breaking gauge singlet brane field have to be suppressed

in order to avoid large FCNCs. The compatibility of the SUSY breaking mechanism and

orbifold GUTs with brane and bulk matter fields is a generic problem which requires

further studies. We have also determined bounds on the SUSY breaking parameters by

näıve dimensional analysis, which turn out not to restrict the phenomenologically allowed

parameter regions.

The parameters relevant for the superparticle mass spectrum are the universal gaugino

mass, the soft Higgs masses, tan β and the sign of µ. We have analysed their impact

on the spectrum and determined the region in parameter space that results in a viable

phenomenology. The model favours moderate values of tan β between about 10 and 25.

The gaugino mass at the GUT scale should not be far below 500GeV in order to satisfy the

LEP bound on the Higgs mass. Typically, the lightest neutralino is bino-like with a mass of

200GeV, and the gluino mass is about 1.2TeV. Either the right-handed or the left-handed

sleptons can be lighter than the neutralinos. The corresponding region in parameter space

grows with tan β. In this region, the gravitino is the LSP with a mass around 50GeV. The

τ̃1 or the ν̃τL is the NLSP. A sneutrino NLSP has the advantage that constraints from big

bang nucleosynthesis and the cosmic microwave background are less stringent [29, 30]. For

a stau NLSP, on the other hand, there exists the exciting possibility that its decays may

lead to the discovery of the gravitino in future collider experiments [35, 36].
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